videoprompt.orgvideoprompt.org是一个专注于AI视频生成提示的网站,提供了一系列用于生成、编辑或理解视频内容的指令集。它通过精选的高质量提示集合、社区驱动的方法和对实际应用的关注,帮助用户解锁AI模型在视频处理中的全部潜力,提高视频制作工作流程的效率,并实现一致的高质量结果。010视频创作# ai视频生成# 内容创作# 视频提示库
Qwen2-VL-7BQwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。020文案写作# 多模态# 多语言支持# 文本生成
VideoLLaMA 2VideoLLaMA 2 是一个针对视频理解任务优化的大规模语言模型,它通过先进的空间-时间建模和音频理解能力,提升了对视频内容的解析和理解。该模型在多选视频问答和视频字幕生成等任务上展现了卓越的性能。020音频处理# 大型语言模型# 空间-时间建模# 视频理解
Qwen2.5-VLQwen2.5-VL 是 Qwen 团队推出的最新旗舰视觉语言模型,是视觉语言模型领域的重要进步。它不仅能够识别常见物体,还能分析图像中的文字、图表、图标等复杂内容,并支持对长视频的理解和事件定位。该模型在多个基准测试中表现出色,尤其在文档理解和视觉代理任务中具有显著优势,展现了强大的视觉理解和推理能力。其主要优点包括高效的多模态理解、强大的长视频处理能力以及灵活的工具调用能力,适用于多种应用场景。020图像生成# 图像识别# 多模态# 文档解析
VideoLLaMA3VideoLLaMA3是由DAMO-NLP-SG团队开发的前沿多模态基础模型,专注于图像和视频理解。该模型基于Qwen2.5架构,结合了先进的视觉编码器(如SigLip)和强大的语言生成能力,能够处理复杂的视觉和语言任务。其主要优点包括高效的时空建模能力、强大的多模态融合能力以及对大规模数据的优化训练。该模型适用于需要深度视频理解的应用场景,如视频内容分析、视觉问答等,具有广泛的研究和商业应用潜力。020图像生成# 图像理解# 多模态# 深度学习
PPLLaVAPPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。020视频创作# GPU实现# 多模态学习# 大型语言模型
Apollo-LMMsApollo是一个专注于视频理解的先进大型多模态模型家族。它通过系统性地探索视频-LMMs的设计空间,揭示了驱动性能的关键因素,提供了优化模型性能的实用见解。Apollo通过发现'Scaling Consistency',使得在较小模型和数据集上的设计决策能够可靠地转移到更大的模型上,大幅降低计算成本。Apollo的主要优点包括高效的设计决策、优化的训练计划和数据混合,以及一个新型的基准测试ApolloBench,用于高效评估。020视频创作# 人工智能# 多模态模型# 机器学习
OmAgent.comOmAgent是一个多模态原生代理框架,用于智能设备等。它采用分治算法高效解决复杂任务,能预处理长视频并以类似人类的精度进行问答,还能基于用户请求和可选天气条件提供个性化服装建议等。目前官网未明确显示价格,但从功能来看,主要面向需要高效任务处理和智能交互的用户群体,如开发者、企业等。010智能聊天机器人# 任务处理# 多模态# 智能设备