tablegpt-agentTableGPT-agent 是一个基于 TableGPT2 的预构建代理模型,专为处理表格数据的问答任务而设计。它基于 Langgraph 库开发,提供用户友好的交互界面,能够高效处理与表格相关的复杂问题。TableGPT2 是一个大型多模态模型,能够将表格数据与自然语言处理相结合,为数据分析和知识提取提供强大的技术支持。该模型适用于需要快速准确处理表格数据的场景,如数据分析、商业智能和学术研究等。010智能聊天机器人# 人工智能# 多模态模型# 自然语言处理
语析Yuxi-Know语析Yuxi-Know 是一个基于大模型 RAG 知识库的知识图谱问答系统,采用 Llamaindex + VueJS + Flask + Neo4j 构建。它支持 OpenAI、国内主流大模型平台的模型调用以及本地 vllm 部署,能够实现知识库问答、知识图谱检索和联网检索等功能。该系统的主要优点是灵活适配多种模型、支持多种知识库格式以及强大的知识图谱集成能力。它适用于需要高效知识管理和智能问答的企业和研究机构,具有较高的技术先进性和实用性。020智能聊天机器人# 大模型# 智能检索# 知识图谱
Meta-spirit-lmMeta-spirit-lm是由Meta公司开发的一款先进的自然语言处理模型,它在Hugging Face平台上发布。这款模型在处理语言相关的任务时表现出色,如文本生成、翻译、问答等。它的重要性在于能够理解和生成自然语言,极大地推动了人工智能在语言理解领域的进步。该模型在开源社区中受到广泛关注,可以用于研究和商业用途,但需遵守FAIR Noncommercial Research License。010智能聊天机器人# 对话系统# 情感分析# 摘要
Aria-Base-64KAria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。020文案写作# 多模态# 长文本处理# 问答系统