AITimelineAI Timeline 是一个记录人工智能领域重要技术发展时间点的开源项目。它详细记录了包括文生图、文生视频、大语言模型等在内的AI技术发展过程中的关键里程碑。该项目使用Vue和TypeScript开发,为AI技术爱好者和研究人员提供了一个了解AI历史和发展趋势的平台。
Open-Sora-PlanOpen-Sora-Plan是一个开源项目,旨在复现OpenAI的Sora(T2V模型),并构建关于Video-VQVAE(VideoGPT)+ DiT的知识。项目由北京大学-兔展AIGC联合实验室发起,目前资源有限,希望开源社区能够贡献力量。项目提供了训练代码,并欢迎Pull Request。
RL4VLMRL4VLM是一个开源项目,旨在通过强化学习微调大型视觉-语言模型,使其成为能够做出决策的智能代理。该项目由Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, Sergey Levine等研究人员共同开发。它基于LLaVA模型,并采用了PPO算法进行强化学习微调。RL4VLM项目提供了详细的代码库结构、入门指南、许可证信息以及如何引用该研究的说明。
LLaVA++LLaVA++是一个开源项目,旨在通过集成Phi-3和LLaMA-3模型来扩展LLaVA模型的视觉能力。该项目由Mohamed bin Zayed University of AI (MBZUAI)的研究人员开发,通过结合最新的大型语言模型,增强了模型在遵循指令和学术任务导向数据集上的表现。
LLM4DecompileLLM4Decompile是一个开源项目,旨在创建并发布第一个专门用于反编译的LLM(大型语言模型),并通过构建首个专注于可重编译性和可执行性的反编译基准测试来评估其能力。该项目通过编译大量C代码样本到汇编代码,然后使用这些数据对DeepSeek-Coder模型进行微调,构建了评估基准Decompile-Eval。
LBM该产品是基于格子玻尔兹曼方法(LBM)的项目,格子玻尔兹曼方法是一种用于计算流体动力学的数值技术,通过模拟微观粒子的运动来描述宏观流体行为。其重要性在于可以对复杂流体系统进行高效模拟,例如多相流、多孔介质中的流动等。主要优点包括计算效率较高、边界条件处理相对简单、易于并行化等。从项目页面来看,该项目是开源项目,托管于GitHub,适合研究人员、学生等进行相关的流体动力学模拟研究和学习,定位为科研和学术用途,目前免费使用。
WordPecker AppWordPecker App是一款创新的语言学习工具,旨在通过个性化学习体验帮助用户高效掌握新语言。它结合了Duolingo风格的互动课程和用户自定义的词汇表,支持从书籍、文章或视频中无缝添加单词,并通过LLM生成的课程进行复习。该产品利用最新的AI技术,为用户提供沉浸式学习体验,同时支持多种语言偏好设置,适合不同语言学习者的需求。其开源特性也鼓励社区参与和持续改进。